Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yan Zheng, Qian Yang and Duan-Jun Xu*

Department of Chemistry, Zhejiang University, People's Republic of China

Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
Disorder in solvent or counterion
R factor $=0.038$
$w R$ factor $=0.098$
Data-to-parameter ratio $=13.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Bis(1H-benzimidazole- κN^{3})bis(4-hydroxy-benzoato- κ O)zinc(II) 0.25-hydrate

In the title compound, $\left[\mathrm{Zn}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{3}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{2}\right] \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$, the $\mathrm{Zn}^{\mathrm{II}}$ atom is coordinated by two 4-hydroxybenzoate anions and two benzimidazole (bzim) molecules, resulting in a distorted $\mathrm{ZnO}_{2} \mathrm{~N}_{2}$ tetrahedral geometry. The short face-toface distance of 3.28 (4) A between parallel partially overlapped bzim ligands of neighboring molecules indicates the existence of $\pi-\pi$ stacking in the crystal structure.

Comment

As part of our ongoing investigation into the nature of $\pi-\pi$ stacking in metal complexes, we have prepared a series of phases incorporating aromatic ligands such as quinoline (Pan \& Xu, 2004) and benzimidazole (bzim) (Li et al., 2005; Zheng et al., 2005). We present here the title mixed-ligand $\mathrm{Zn}^{\text {II }}$ complex, (I) (Fig. 1), for comparison with the structures reported previously.

(I)

Compound (I) is isostructural with a $\mathrm{Co}^{\mathrm{II}}$ complex (Zheng et al., 2005), in which a compressed $\mathrm{Co}-\mathrm{O}-\mathrm{C}$ angle [103.5 (2) ${ }^{\circ}$] suggested a long but genuine $\mathrm{Co}-\mathrm{O}$ bonding interaction of 2.561 (3) \AA (i.e. a highly asymmetric bidentate coordination by the carboxylate group of the 4 -hydroxybenzoate anion in question). As shown in Table 1, the $\mathrm{Zn}-\mathrm{O}$ and $\mathrm{Zn}-\mathrm{N}$ bond distances in (I) are comparable with the corresponding normal $\mathrm{Co}-\mathrm{O}$ bond distances $[1.970$ (2) and $1.993(2) \AA]$ and $\mathrm{Co}-\mathrm{N}$ bond distances $[2.026$ (3) and 2.013 (3) \AA], but the $\mathrm{Zn} \cdots$ O5 separation of 2.693 (2) \AA is significantly longer than the corresponding $\mathrm{Co}-\mathrm{O}$ bond in the $\mathrm{Co}^{\mathrm{II}}$ complex. The $\mathrm{Zn}-\mathrm{O} 4-\mathrm{C} 41$ angle of 108.2 (2) ${ }^{\circ}$ is also larger than the compressed $\mathrm{Co}-\mathrm{O}-\mathrm{C}$ angle.

These findings suggest there is no significant bonding interaction between atoms Zn and O 5 in (I). Thus, the metal coordination polyhedron for (I) is a somewhat distorted $\mathrm{ZnO}_{2} \mathrm{~N}_{2}$ tetrahedron, compared to distorted trigonal bipyramidal for the $\mathrm{Co}^{\mathrm{II}}$ complex. The difference in coordination number and coordination geometry between the two compounds might arise from the different electronic configurations of the two metal ions.

Figure 1
The molecular structure of (I), shown with 30% probability displacement ellipsoids (arbitrary spheres for H atoms). The dashed line indicates a hydrogen bond.

Figure 2
The $\pi-\pi$ stacking between parallel N23-imidazole and $\mathrm{N} 23^{\mathrm{iv}}$-imidazole rings in (I) [symmetry code: (iv) $\frac{3}{2}-x, \frac{3}{2}-y, 1-z$].

A partially overlapped arrangement is observed between parallel N23-imidazole and N23 ${ }^{\text {iv }}$-imidazole rings (see Fig. 2
for symmetry code). The face-to-face separation of 3.28 (4) \AA parallel N 23 -imidazole and $\mathrm{N} 23^{\mathrm{iv}}$-imidazole rings (see Fig. 2
for symmetry code). The face-to-face separation of 3.28 (4) \AA indicates the existence of $\pi-\pi$ stacking. The disordered noncoordinated water molecule, situated close to a twofold axis, is coordinated water molecule, situated close to a twofold axis, is
hydrogen bonded to the uncoordinated carboxyl O 2 atom. Further $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 2)
involving the ligands help to stabilize the crystal structure of Further $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 2)
involving the ligands help to stabilize the crystal structure of (I).

Experimental

Commercial analytical grade reagents were used. $\mathrm{ZnCl}_{2}(1 \mathrm{mmol}), 4-$ hydroxybenzoic acid (2 mmol), bzim (2 mmol) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(1 \mathrm{mmol})$ were dissolved in a mixture of water $(15 \mathrm{ml})$ and ethanol $(5 \mathrm{ml})$. The solution was refluxed for 4 h and filtered after cooling to room temperature. Single crystals of (I) were obtained from the filtrate after 3 d .

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{3}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{2}\right] \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$	$D_{x}=1.479 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=580.37$	Mo $K \alpha$ radiation
Monoclinic, C2/c	Cell parameters from 5766
$b=27.434$ (6) \AA	$\theta=3.0-23.0^{\circ}$
$c=15.069$ (4) \AA	$\mu=0.99 \mathrm{~mm}^{-1}$
$\beta=105.138(4)^{\circ}$	$T=295$ (2) K
$V=5213$ (2) \AA^{3}	Block, colorless
$Z=8$	$0.29 \times 0.20 \times 0.11 \mathrm{~mm}$
Data collection	
Rigaku R-AXIS RAPID diffractometer	3148 reflections with $I>2 \sigma(I)$ $R_{\mathrm{int}}=0.035$
ω scans	$\theta_{\text {max }}=25.2^{\circ}$
Absorption correction: multi-scan	$h=-15 \rightarrow 15$
(ABSCOR; Higashi, 1995)	$k=-32 \rightarrow 25$
$T_{\text {min }}=0.745, T_{\text {max }}=0.902$	$l=-16 \rightarrow 18$

13925 measured reflections
4714 independent reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0379 P)^{2}\right.} \\
&\quad+5.4788 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.34 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.24 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.098$
$S=1.02$

4714 reflections
361 parameters
H-atom parameters constrained
$D_{x}=1.479 \mathrm{Mg}{ }^{-3}$
Mo $K \alpha$ radiation
reflections
$\theta=3.0-23.0^{\circ}$
$\mu=0.99 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Block, colorless
$0.29 \times 0.20 \times 0.11 \mathrm{~mm}$

$$
\begin{aligned}
& \text { reflections with } I>2 \sigma(I) \\
& 0.035 \\
& =25.2^{\circ} \\
& -15 \rightarrow 15 \\
& -32 \rightarrow 25 \\
& 16 \rightarrow 18
\end{aligned}
$$

metal-organic papers

0.258 (9), and was fixed as 0.25 in the final cycles of refinement; this water molecule is thus disordered. The H atoms attached to $\mathrm{O} 1 W$ were placed in theoretical positions (Nardelli, 1999). The H atoms of the hydroxy groups were located in a difference map. The O-bound H atoms were refined as riding in their as-found relative positions, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. Other H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and refined as riding with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}($ carrier $)$.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The work was supported by the National Natural Science Foundation of China (grant No. 20443003).

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Li, H., Yin, K.-L. \& Xu, D.-J. (2005). Acta Cryst. C61, m19-m21.
Nardelli, M. (1999). J. Appl. Cryst. 32, 563-571.
Pan, T.-T. \& Xu, D.-J. (2004). Acta Cryst. E60, m56-m58
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Zheng, Y., Pan, T.-T. \& Xu, D.-J. (2005). Acta Cryst. E61, m2294-m2296.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

